by Teik Guan Tan, Vishal Sharma, Zengpeng Li, Pawal Szalachowski, and Jianying Zhou
Since the formalization of Verifiable Delay Functions (VDF) by Boneh et al. in 2018, VDFs have been adopted for use in blockchain consensus protocols and random beacon implementations. However, the impending threat to VDF-based applications comes in the form of Shor’s algorithm running on quantum computers in the future which can break the discrete logarithm and integer factorization problems that existing VDFs are based on. Clearly, there is a need for quantum-secure VDFs. In this paper, we propose ZKBdf, which makes use of ZKBoo, a zero knowledge proof system for verifiable computation, as the basis for realizing a quantum-secure VDF. We describe the algorithm, provide the security proofs, implement the scheme and measure the execution and size requirements. In addition, as ZKBdf extends the standard VDF with an extra “Prover-secret” feature, new VDF use-cases are also explored.
Read the full paper here: https://eprint.iacr.org/2022/1373
Codes found here: https://github.com/tanteikg/zkbdf